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Abstract

IMPORTANCE Mammography screening currently relies on subjective human interpretation.
Artificial intelligence (AI) advances could be used to increase mammography screening accuracy by
reducing missed cancers and false positives.

OBJECTIVE To evaluate whether AI can overcome human mammography interpretation limitations
with a rigorous, unbiased evaluation of machine learning algorithms.

DESIGN, SETTING, AND PARTICIPANTS In this diagnostic accuracy study conducted between
September 2016 and November 2017, an international, crowdsourced challenge was hosted to foster
AI algorithm development focused on interpreting screening mammography. More than 1100
participants comprising 126 teams from 44 countries participated. Analysis began November
18, 2016.

MAIN OUTCOMES AND MEASUREMENTS Algorithms used images alone (challenge 1) or combined
images, previous examinations (if available), and clinical and demographic risk factor data (challenge
2) and output a score that translated to cancer yes/no within 12 months. Algorithm accuracy for
breast cancer detection was evaluated using area under the curve and algorithm specificity
compared with radiologists’ specificity with radiologists’ sensitivity set at 85.9% (United States) and
83.9% (Sweden). An ensemble method aggregating top-performing AI algorithms and radiologists’
recall assessment was developed and evaluated.

RESULTS Overall, 144 231 screening mammograms from 85 580 US women (952 cancer positive
�12 months from screening) were used for algorithm training and validation. A second independent
validation cohort included 166 578 examinations from 68 008 Swedish women (780 cancer
positive). The top-performing algorithm achieved an area under the curve of 0.858 (United States)
and 0.903 (Sweden) and 66.2% (United States) and 81.2% (Sweden) specificity at the radiologists’
sensitivity, lower than community-practice radiologists’ specificity of 90.5% (United States) and
98.5% (Sweden). Combining top-performing algorithms and US radiologist assessments resulted in
a higher area under the curve of 0.942 and achieved a significantly improved specificity (92.0%) at
the same sensitivity.

CONCLUSIONS AND RELEVANCE While no single AI algorithm outperformed radiologists, an
ensemble of AI algorithms combined with radiologist assessment in a single-reader screening
environment improved overall accuracy. This study underscores the potential of using machine
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Abstract (continued)

learning methods for enhancing mammography screening interpretation.

JAMA Network Open. 2020;3(3):e200265.

Corrected on March 30, 2020. doi:10.1001/jamanetworkopen.2020.0265

Introduction

Mammography screening is one of the most widely deployed tools for early breast cancer detection
and has been shown to decrease mortality in multiple randomized clinical trials.1 However, screening
mammography is imperfect with 1 in 8 cancers missed at time of interpretation in US community
practice.2 Roughly 9% to 10% of the 40 million US women who undergo routine breast screening
each year are recalled for additional diagnostic imaging; only 4% to 5% of women recalled are
ultimately diagnosed as having breast cancer.2 These false positives lead to preventable harms,
included patient anxiety, benign biopsies, and unnecessary intervention or treatment.3 High false-
positive rates incur significant resources and contribute to the annual $10 billion mammography
screening costs in the United States.4

Currently, mammograms are interpreted by radiologists and rely on human visual perception to
identify relevant traits,5 leaving its benefit dependent on subjective human interpretation to
maximally extract all diagnostic information from the acquired images.6 In 1998, computer-assisted
detection software was developed for mammography with the hopes of improving radiologist
performance; however, computer-assisted detection has not improved interpretive accuracy.7,8

Recent deep learning advances, and the ever increasing large computational power and digital
mammography (DM) data availability, renewed the interest in evaluating whether more sophisticated
models based on quantitative imaging features can match or even outperform human interpretation
alone.9-17 Such efforts could aid in improving specificity and overall performance in single-
radiologist settings. In double-radiologist interpretive settings such as in Europe, highly accurate
algorithms could alleviate the person power needed for double-radiologist interpretation and
consensus.

Throughout the last decade, crowdsourced competitions or challenges have been popularized
as highly effective mechanisms for engaging the international scientific community to solve complex
scientific problems.18,19 The Dialogue on Reverse Engineering Assessment and Methods (DREAM)
initiative has run dozens of biomedical challenges, establishing robust and objective computational
benchmarks in multiple disease areas and across multiple data modalities.19 This report describes the
DM DREAM challenge, which was designed to develop and validate breast cancer detection
algorithms to determine whether machine learning methods applied to mammography data can
improve screening accuracy.20,21

Methods

The study followed the Standards for Reporting of Diagnostic Accuracy (STARD) reporting guideline.22

We conducted an international crowdsourced challenge to assess whether artificial intelligence (AI)
algorithms could meet or beat radiologists’ interpretive screening mammography performance.21 The
challenge asked participants to develop algorithms inputting screening mammography data and
outputting a score representing the likelihood that a woman will be diagnosed with breast cancer within
the next 12 months (eAppendix 2 in the Supplement). Digital mammogram images included different
views (eTable 2 in the Supplement) from the most recent screening examination. Subchallenge 2
provided access to images for the current and, when available, previous screening examinations, as
well as clinical and demographic risk factor information typically available to interpreting radiologists
(eAppendix 3 and eTable 1 in the Supplement).
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The DM DREAM challenge was hosted between November 2016 and November 2017. There
were 4 phases (eAppendix 1 and eFigure 1 in the Supplement): open phase (September 2016-
November 2016), leaderboard phase (November 2016-March 2017), and validation phase (March
2017-May 2017), which together constitute the competitive phase and the community phase (July
2017-November 2017). A first data set was provided by Kaiser Permanente Washington (KPW)
(eAppendix 5 in the Supplement), which was used during the competitive and community phases. A
second data set was provided by the Karolinska Institute (KI) in Sweden (eAppendix 5 in the
Supplement), which was only used for trained algorithm validation. To protect data privacy, both data
sets were securely protected behind a firewall and were not directly accessible to challenge
participants, who had to submit their algorithms for automated training and testing behind the
firewall (eAppendix 7 in the Supplement).

In the competitive phase, the KPW data set was randomly split into 3 data sets matched on age,
body mass index, and race/ethnicity (eAppendix 3 in the Supplement): leaderboard phase training
(50%), leaderboard phase evaluation (20%) (eTable 3 in the Supplement), and final evaluation data
set (30%) (eTable 4 in the Supplement). The leaderboard phase allowed competitors to train
algorithms using the KPW training data or external (public or private) data and submit their trained
algorithms for evaluation. To minimize overfitting, a maximum of 9 submissions per team were
scored in the leaderboard data set with publicly posted results.20 During the validation phase,
participants were scored using the KPW final evaluation data set (Figure 1A) using area under the
curve (AUC) and partial AUC as evaluation metrics (eAppendix 6 in the Supplement) assessed at the
examination level, on which the final ranking of team performances was determined.

The 8 top-performing competitive phase teams were invited to collaborate during the
community phase to further refine their algorithms (Figure 1B). The output of this phase was an
ensemble model, consisting of a weighted aggregation of algorithm predictions into a new algorithm
called the challenge ensemble method (CEM). The CEM model was further integrated with the
radiologists’ assessment into another ensemble model called the CEM+R model. The CEM and CEM+R
models were trained using the training and leaderboard data of the competitive phase, with
performance assessed using the KPW and KI final evaluation data sets (Figure 1C and eTable 5 in the
Supplement).

Data Sources and Characteristics
Kaiser Permamente Washington provided the primary data set for the challenge, with images linked
to curated data as part of the Breast Cancer Surveillance Consortium.21 These data include
prospectively collected patient-reported breast cancer risk factor information linked to breast
imaging data, radiologist interpretations and recommendations, and benign and malignant breast
tumor biopsy results. An additional independent validation data set was provided by the KI and
comprised women screened in the Stockholm region of Sweden between April 2008 to December
2012 with comparable data provided by KPW. Both data sets were deidentified full-field DMs. This
collaboration received institutional review board approval at Sage Bionetworks with a waiver of
consent and Health Insurance Portability and Accountability Act.

Each screening examination was labeled as cancer negative or cancer positive at the breast
level, defined as a tissue biopsy yielding an invasive cancer or ductal carcinoma in situ positive result
within 1 year of the screening examination. Images were weakly labeled, meaning the presence or
absence of cancer was reported per screening examination but not the actual location of cancer on
each image. Breast-level performance was used in the competitive phase, whereas examination-level
performance was used in the collaborative phase to make results directly comparable to radiologists’
performance (eAppendix 4, eAppendix 6, and eFigure 2 in the Supplement).

Training and Evaluating Models
Challenge data providers required the data to be protected from being downloaded, viewed, or
otherwise directly accessed by participants. Therefore, we used a model-to-data approach23 that
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required participants to submit containerized algorithms (ie, software that was executed on a
participant’s behalf in a secure cloud environment) using the IBM and Amazon cloud platforms. Both
clouds were donated especially for this challenge (eAppendix 7 and eFigures 3-5 in the Supplement).
The model-to-data system was implemented in Synapse (Sage Bionetworks),24 a web-based
platform for running biomedical challenges. Participants were asked to structure their models in the
form of a lightweight portable machine image called a Docker image.25

Ensemble Method
It has been shown that aggregating the predictions of a set of heterogeneous algorithms can improve
performance over the individual algorithms.26,27 We developed the CEM and CEM+R ensemble
classifiers using a meta-learner stacking method26 (Appendix 8 in the Supplement). Given the data
for a screening examination, each individual algorithm outputs a confidence level (a number between
0 and 1) indicative of the likelihood estimated by the algorithm that the woman will develop breast
cancer within a year of the screening test. The CEM ensemble algorithm takes as inputs the
confidence levels of each of the community phase 8 top-performing methods. The CEM+R takes the
same inputs as the CEM ensemble plus the radiologist assessment, represented with a 1 if the woman

Figure 1. Training and Evaluation of Algorithms During the Digital Mammography DREAM Challenge

The digital mammography
DREAM challenge

A

Ensembling modelsB

Ensembling models
and radiologist

C

Submitted
models

Teams

Organizers
and

selected teams

Organizers
and

selected teams

Public/private
data sets

Secured, GPU-accelerated cloud

Final team
ranked

performance

KPW training
data set

KPW evaluation
data set

Refined
models

Breast cancer
predictions

Breast cancer
predictions

Id Conf.

Scoring: AUC
pAUC

AUC
specificity at
radiologists’

sensitivity

Id Conf.

Id Conf.

Challenge ensemble
method (CEM)

KPW evaluation
data set

Karolinska
evaluation

data set

Radiologist
assessment

Breast cancer
predictions

AUC
specificity at
radiologists’

sensitivity

Id Conf.

Id Conf.

CEM + R

KPW evaluation
data set

Karolinska
evaluation

data set

Training and evaluation Kaiser Permamente
Washington (KPW) and Karolinskia Institute data were
not directly available to challenge participants; they
were stored behind a firewall in a secure cloud (gray
box). To access the data, participants submitted
models to be run behind the firewall, in the graphics
processing unit (GPU)–accelerated cloud (IBM). A,
Training and evaluation of models submitted by teams
during the Digital Mammography Dialogue on Reverse
Engineering Assessment and Methods (DREAM)
Challenge. B, A subset of the 8 best models in the
evaluation KPW dataset were combined into the
Challenge Ensemble Method (CEM), trained using the
KPW training set and evaluated in the KPW and
Karolinska Institute evaluation datasets. C, We
developed a final ensemble method incorporating
radiologists' interpretation in a method called
CEM+radiologist (CEM+R). AUC indicates area under
the curve; pAUC, partial area under the curve.

JAMA Network Open | Imaging Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms

JAMA Network Open. 2020;3(3):e200265. doi:10.1001/jamanetworkopen.2020.0265 (Reprinted) March 2, 2020 4/15

Downloaded From: https://jamanetwork.com/ on 04/07/2020

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2020.0265&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.0265
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2020.0265&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.0265


was recalled or a 0 otherwise. This input information is combined to generate the CEM or the CEM+R
ensemble prediction. For the meta-learner classifier, we chose an elastic net regularized logistic
regression28 and the R package caret for construction (R Foundation for Statistical Computing).29 We
trained the meta-learner (ie, tuned the parameters of the logistic regression) on the KPW training
data using 10-fold crossvalidation. Final performance assessment was done by applying exactly once
the CEM and CEM+R methods to the evaluation KPW and KI data sets.

Statistical Analysis
Analysis began November 18, 2016. We used AUC as our primary metric for evaluating and ranking
algorithm performance during the competitive phase. To assess the algorithms’ sensitivity and
specificity, we computed the radiologists’ sensitivity for the data set under study: 85.9% for KPW and
77.1% (single reader) and 83.9% (consensus reading) for KI, which served as the algorithms’
specificity prediction threshold. Spearman correlation was used to test for rank distribution similarity
of AUCs and specificities between the data sets. We used binomial proportion CIs to compare the
significance between specificity of radiologists and CEM+R. The DeLong test of significance was used
to compare the area under the receiver operating characteristic curve of 2 correlated receiver
operating characteristic curves. One-tailed P values had a statistical significance threshold of .05. All
analyses were completed in R statistical software, version 3.5.1 (R Foundation for Statistical
Computing).

Results

After curation (eAppendix 1 in the Supplement), the KPW data set included 144 231 examinations
from 85 580 women, of whom 952 (1.1%) were cancer positive (697 cancers [73.2%] were invasive)
(Table). The portion of this data set used to evaluate the methods amounts to 30%, which
corresponds to the data of 25 657 women, of whom 283 (1.1%) were cancer positive (202 cancers
[71.3%] were invasive), while the remaining examinations were used for training. The KI data set
provided 166 578 examinations from 68 008 women, of whom 780 (1.1%) were cancer positive (681
cancers [87.3%] were invasive). Women from the KI data set were younger than those in KPW (mean
[SD] age, 53.3 [9.4] years vs 58.4 [9.7] years, respectively). Time between screening examinations
was bimodal in the 2 data sets and tended to be longer in the KI set (mean [SD] time for first mode:
18.9 [0.9] months; second mode: 24.9 [1.1] months) vs the KPW set (mean [SD] time for first mode:
12.9 [1.7] months; second mode: 24.2 [2.1] months).

Table. Composition of the Data Sets From Kaiser Permanente Washington and Karolinska Institute

Characteristic

No. (%)

Kaiser Permanente Washington
Karolinska Institute
EvaluationTraining Evaluation

Screening examinations, No.a 100 974 43 257 166 578

Women, No.b 59 923 25 657 68 008

Women diagnosed with breast cancer within 12
mo of mammogram

669 (1.1) 283 (1.1) 780 (1.1)

Women without a breast cancer diagnosis within
12 mo of mammogram

59 254 (98.9) 25 374 (98.9) 67 228 (98.9)

Invasive breast cancers 495 (74.0) 202 (71.4) 681 (87.3)

Ducal carcinoma in situ 174 (26.0) 81 (28.6) 99 (12.7)

Age, mean (SD), y 58.4 (9.7) 58.4 (9.7) 53.3 (9.4)

BMI, mean (SD) 28.2 (6.9) 28.1 (6.8) NA

Women with ≥1 prior mammogram 27 165 (45.3) 11 651 (45.4) 50 358 (74.2)

Time since last mammogram, mean (SD), mo

Mode 1 12.8 (1.7) 12.9 (1.7) 18.9 (0.9)

Mode 2 24.2 (2.1) 24.2 (2.1) 24.9 (1.1)

Abbreviations: BMI, body mass index (calculated as
weight in kilograms divided by height in meters
squared); NA, not applicable.
a Subchallenge 2 provided access to all screening

images for the most recent screening examination
and, when available, previous screening
examinations.

b Subchallenge 1 provided access only to the digital
mammogram images from the most recent screening
examination.
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Submitted Algorithms
The DM DREAM challenge included more than 1100 individuals participating, comprising 126 teams
from 44 countries (eAppendix 9 in the Supplement). Thirty-one teams submitted their methods for
final validation in the competitive phase on the KPW evaluation set (Figure 2A). In subchallenge 1,
median AUC performance for all teams was 0.611 (interquartile range, 0.54-0.77), with the best-
performing method achieving a 0.855 AUC and a specificity of 68.5% at sensitivity of KPW
radiologists of 85.9%. The AUC had little improvement when algorithms were able to use clinical,
demographic, and longitudinal information (AUC = 0.858 with specificity = 66.3% at sensitivity
85.9%). We observed no improvement across teams in performance measured by AUC (P = .51;
t = 0.024) when comparing their results in subchallenge 2 to subchallenge 1 (Figure 2B).

To assess the generalizability of these methods, we evaluated the top 20 methods on the KI
data set. The best-performing method on the KPW data achieved top performance on KI data
(AUC = 0.903; specificity = 81.2% at the 83.9% KI radiologists’ sensitivity). Ranking individual
methods on the data sets were found to be significantly correlated by AUC (r = 0.98; 95% CI, 0.95-
1.00; P < .001; Figure 2C) and by specificity at Breast Cancer Surveillance Consortium’s average
sensitivity2 of 86.9% (r = 0.96; 95% CI, 0.92-1.00; P < .001; Figure 2D).

Figure 2. Performance of the Algorithms Submitted at the End of the Competitive Phase
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Ensemble Models and Radiologists’ Predictions
We evaluated whether an ensemble approach could improve overall performance accuracy. Focusing
first on the KPW evaluation data, the CEM significantly increased performance (AUC = 0.895;
P < .001; z = 6.7) when compared with the best-performing team (AUC = 0.858) (Figure 3A). To
compare the dichotomous screening interpretation (recall/no recall) of the radiologist with
continuous AI predictions, we examined the specificity using the fixed sensitivity of the radiologist in
each of the cohorts. At the KPW radiologist sensitivity of 85.9%, the specificity of the top model,
CEM, and radiologist was 66.3%, 76.1%, and 90.5%, respectively (Figure 4A). Because AI was
consistently inferior to the radiologists’ performance, we evaluated whether CEM+R could improve
performance. Evaluating the CEM+R on KPW data yielded an AUC of 0.942, with 92% specificity
(95% CI, 91.7%-92.3%) (Figure 3A and Figure 4A), higher than the radiologists’ specificity of 90.5%
(95% CI, 90.1%-90.9%; P < .001).

Accuracy assessments of the CEM and CEM+R models were repeated in patient subpopulations
by invasive vs ductal carcinoma in situ, age group, and time since examination. We observed that the
CEM+R model consistently resulted in a significantly higher specificity compared with the
radiologists’ assessments alone except for women with ductal carcinoma in situ in KPW (Figure 4A),
women with at least 1 previous mammogram done 9 months or earlier in KPW (resulting in a tie
between radiologists and CEM+R) (Figure 4A) and women in the oldest age groups in both KPW and
KI evaluation data sets (Figure 4A and Figure 4B).

Because the KI data set includes data from a countrywide screening program that completes
biennial screening with each mammogram undergoing double reading by 2 radiologists, we used the
first KI reader interpretation to directly compare with the US data set. Like the KPW analysis, the
CEM method achieved a higher AUC (0.923) compared with the top-performing model AUC (0.903)
(Figure 3B) on the KI data set. At the first readers’ sensitivity of 77.1%, the specificity of the top model,
CEM, and radiologist was 88%, 92.5%, and 96.7%, respectively (Figure 4B). The CEM+R specificity
was 98.5% (95% CI, 98.4%-98.6%) (KI AUC: 0.942; Figure 3B and Figure 4B), higher than the
radiologist alone specificity of 96.7% (95% CI, 96.6%-96.8%; P < .001).

We evaluated whether our ensemble method could be generalized to the double-reading
context. Using consensus readings (double reading) from the KI data set, we found sensitivity and
specificity of 83.9% and 98.5%, respectively, which outperformed the first readers’ sensitivity and
specificity of 77.1% and 96.7%, respectively. The CEM+R algorithm, using the consensus readers’

Figure 3. Receiver Operating Characteristic Curves of the Best Individual CEM and CEM+R Methods
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Figure 4. Comparison of the Specificity of Radiologist(s) and CEM+R on Kaiser Permanente Washington (KPW) and Karolinska (KI) Data
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calls, did not significantly improve the consensus interpretations alone (98.1% vs 98.5% specificity,
respectively). This observation persisted in subpopulation analyses, where consensus radiologist
interpretations outperformed the CEM+R ensemble across nearly all subpopulations (Figure 4C).

Top-Performing Algorithmic Methods
The most accurate competitive phase solution was a custom neural network designed for the
challenge, initially trained on strongly labeled external data, and subsequently refined using the
challenge training data set with 3 teams tied for second (Therapixel model in eAppendix 10 and
eFigures 6 and 7 in the Supplement). A second strategy was an adaptation of the Faster R-CNN30

object detection framework for mammography,31 which was only trained on external data sets with
location annotation for lesions (Dezso Ribli’s model in eFigure 8 in the Supplement). Another model
used a combination of a higher resolution method to detect calcifications with lower resolution
method for masses. A fourth method used a custom neural network with multiple different
resolution views of the mammograms32 (DeepHealth’s model in eFigure 9 in the Supplement).

Discussion

The results from our study underscore the promise of using deep learning methods for enhancing the
overall accuracy of mammography screening. While no single AI algorithm outperformed US
community radiologist benchmarks,2 an ensemble of AI algorithms combined with single-radiologist
assessment was associated with an improved overall mammography performance. Surprisingly,
there was no additional improvement in performance when models had access to clinical variables or
prior examinations. It is possible that participants did not fully exploit this information, especially the
use of prior imaging examinations from the same women. This suggests that future algorithm
development would do well to focus on the use of prior images from the same women to detect
breast cancer. Furthermore, including additional clinical features not provided in this challenge may
result in improved performance.33 With more than 1100 participants worldwide from 44 countries,
more than 1.2 million images representing 310 827 examinations robustly linked to cancer outcomes
from 2 population-based screening programs, and a third-party approach for evaluation of AI
algorithms on 2 independent data sets, the DM DREAM challenge represents the most objective and
rigorous study of deep learning performance for automated mammography interpretation thus far,
to our knowledge.

Our trained CEM+R ensemble method used the top AI algorithms resulting from the challenge
and the single-radiologist recall assessment available from the KPW training data set. When the
CEM+R method was evaluated in 2 independent data sets that included single-radiologist
assessments (KPW and KI evaluation sets), the ensemble method had a higher diagnostic accuracy
compared with the single radiologist alone. This conclusion is consistent with a recent study
demonstrating the AUC of a hybrid model that averaged the probability of malignancies estimated by
a neural network and an expert radiologist outperformed the AUC of either.17 The improvement of
the CEM+R method over the radiologist assessment was observed across all women except for the
following groups: women 70 years and older in both in the KI and KPW cohorts, women with ductal
carcinoma in situ, and women with at least 1 previous screening mammogram done 9 months or
more earlier in the KPW cohort. In contrast, when the same ensemble method was evaluated using
the consensus interpretation instead of the first radiologist assessment in the Swedish cohort, the
ensemble performance did not improve in specificity. This somewhat paradoxical result is likely
owing to the fact that the CEM+R ensemble was trained on the single-radiologist interpretation and
thereby the importance given by the algorithm to the radiologist’s final interpretation may have been
less than it would have been if the algorithm had been trained with the consensus interpretations.
The performance enhancement of the CEM+R ensemble over the single-reader assessment
underscores the potential value of AI as a second digital reader in a single-radiologist environment
such as the United States. In the double-reading and consensus environment seen in Sweden and
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many other European countries, the addition of AI may not have as great an effect on improving
overall diagnostic accuracy, even though it is likely that training an ensemble of AI algorithms and
radiologists consensus assessments would improve over the consensus assessments alone. Taken
together, our results suggest that adding AI to mammography interpretation in single-radiologist
settings could yield significant performance improvements, with the potential to reduce health care
system expenditures and address the recurring radiologist person-power issues experienced in
population-based screening programs.

This challenge included 2 large population-based mammography data sets from 2 countries that
prospectively collected consecutive screening examinations linked to clinical and longitudinal data
with robust capture of breast cancer outcomes (�12 months’ follow-up) to inform ground truth.
These independent data sets differ by screening interval, cancer composition, radiologist interpretive
practices, and some technical parameters (mean compression force), all of which may contribute to
the algorithm performance differences between these 2 cohorts. The top-performing algorithm
achieved specificities of 66.2% and 81.2% in the KPW and KI data sets, respectively, at the
radiologists’ sensitivity. We believe that the reason for this difference between the 2 data sets is
2-fold. First, the 2 specificities correspond to 2 different sensitivity operating points in the 2 data
sets: a sensitivity of 85.9% in the KPW data set and a sensitivity of 83.9% in the KI data set.
Everything else being equal, a lower sensitivity in the KI data set will result in a higher specificity.
Second, we believe the longer screening intervals in the KI data set may make the KI data set easier
for cancer detection. This is supported by the difference in the AUC between the KPW and KI data
sets for the top-performing algorithm (0.858 and 0.903, respectively), despite the fact that the
training data set provided in the challenge consisted of an independent data set collected at KPW.
Despite the important differences between these cohorts and screening programs, the performance
concordance of the algorithms underscores the generalizability of our findings.

To our knowledge, this was the first study in AI and mammography benchmarking requiring
teams to submit their algorithms to the challenge organizers, which permitted the evaluation of their
algorithms in an unbiased and fully reproducible manner. We believe this to be an important new
paradigm for data sharing and cloud-based AI algorithm development,23 allowing highly sensitive
and restricted data such as screening mammograms to be used for public research and AI algorithm
assessment. Moreover, as a stipulation of the DREAM organization and challenge funder, our fully
documented algorithms are freely available to the larger research community for use and assessment
in future studies of automated and semiautomated mammography interpretation.34

Limitations
This study has some limitations. We recognize it is currently theoretical to combine radiologist
interpretation and AI algorithms. We did not study the interaction of a human interpreter with AI
algorithm results and how AI would influence radiologists’ final assessments is an area requiring
greater research efforts.5,35 Challenge participants were unable to download and manipulate the
larger training and validation image data sets, and mammography images were not strongly labeled,
meaning cancer regions were not localized. We observed top-performing challenge teams using
external data sets containing spatially annotated tumor information for model development had
significantly higher performance in the KPW evaluation data than teams without access to strongly
labeled external data (eFigure 10 in the Supplement). During the community phase with additional
training data, the faster R-CNN based approach31 surpassed the top-performing teams’ method,
which contributed to the improved performance of the ensemble model. This likely reflects that
although our data sets are large, they are limited by the relatively small number of positive cases.
Consequently, large comparable data sets with spatial annotation will be needed for training original
algorithms or vastly larger cohorts will be required to train the next generation of AI models.
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Conclusions

In summary, the DM DREAM challenge represents the largest objective deep learning benchmarking
effort in screening mammography interpretation to date. An AI algorithm combined with the
single-radiologist assessment was associated with a higher overall mammography interpretive
accuracy in independent screening programs compared with a single-radiologist interpretation
alone. Our study suggests that a collaboration between radiologists and an ensemble algorithm may
reduce the recall rate from 0.095 to 0.08, an absolute 1.5% reduction. Considering that
approximately 40 million women are screened for breast cancer in the United States each year, this
would result in more than half a million women annually who would not have to undergo
unnecessary diagnostic work-up. Confirmation of these estimates will require additional validation
and testing in clinical settings.
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